Appendices

A. List of symbols

Symbol

Description

\(t\)

Time coordinate in Boyer-Linquist type coordinates

\(r\)

Radial coordinate in Boyer-Linquist type coordinates

\(\theta\)

Polar angle in Boyer-Linquist type coordinates

\(\phi\)

Azimuthal angle in Boyer-Linquist type coordinates

\(\mathsf{h}\)

Enthalpy per rest mass-energy

\(h\)

Pseudo-enthalpy defined as \(h = \ln \mathsf{h}\). Independent integration variable

\(h_{c}\)

Pseudo-enthalpy defined exactly at the center of the NS

\(h_{\epsilon}\)

Pseudo-enthalpy at the small core of radius \(\epsilon\) from the center of the NS

\(R\)

Radial coordinate in Hartle-Thorne coordinates

\(\Theta\)

Polar angle in Hartle-Thorne coordinates (\(\Theta \equiv \theta\))

\(R_{\epsilon}\)

Radial coordinate in Hartle-Thorne coordinates at small core of radius \(\epsilon\)

\(\epsilon\)

Book-keeping parameter of the Hartle-Thorne approximation

\(g_{\mu \nu}\)

Axially symmetric full spacetime metric tensor

\(g^{(0)}_{\mu \nu}\)

Spherically symmetric background metric tensor

\(h_{\mu \nu}\)

Metric perturbation tensor

\(u^{\mu}\)

Fluid 4-velocity vector of the NS

\(T_{\mu \nu}\)

Perfect fluid stress-energy tensor

\(\nu\)

Background metric function found in \(g_{tt}\)

\(\nu^{\textsf{ext}}\)

Function \(\nu\) valid only outside the NS

\(\lambda\)

Background metric function found in \(g_{rr}\)

\(\lambda^{\textsf{ext}}\)

Function \(\lambda\) defined only outside the NS

\(M\)

Enclosed mass-energy function related to \(\lambda\) as \(M \equiv (1-e^{-\lambda})R/2\)

\(f\)

Schwarzschild function given by \(f \equiv 1-2M/R\)

\(p\)

Pressure function at the interior of the NS

\(p_{c}\)

Pressure at exactly the center of the NS

\(\varepsilon\)

Total energy density function at the interior of the NS

\(M_{\star}\)

Total mass-energy of the NS

\(R_{\star}\)

Radius of the NS

\(C\)

Compactness of the NS defined as \(C \equiv M_{\star} / R_{\star}\)

\(\Omega\)

Constant angular speed of the NS

\(\omega^{(1)}\)

Metric function perturbation at \(\mathcal{O}(\epsilon)\) found in \(g_{t\phi}\)

\(\varpi^{(1)}\)

Relative angular velocity at order \(\mathcal{O}(\epsilon)\) defined as \(\varpi^{(1)} \equiv \Omega - \omega^{(1)}\)

\(\varpi^{(1)}_{1}\)

Mode \(\ell = 1\) function from the vector harmonic decomposition of \(\varpi^{(1)}\)

\(\varpi^{(1)}_{1,c}\)

Defined as \(\varpi^{(1)}_{1}\) evaluated exactly at the center of the NS

\(\varpi^{(1)}_{1,ext}\)

Function \(\varpi^{(1)}_{1}\) valid only at the exterior of the NS

\(S\)

Angular momentum of the NS

\(I\)

Moment of inertia of the NS

\(\bar{I}\)

Dimensionless moment of inertia defined as \(\bar{I} \equiv I / M^{3}_{\star}\)

\(\xi^{(2)}\)

Radial displacement function away from sphericity

\(\xi^{(2)}_{0}\)

Mode \(\ell = 0\) function from harmonic decomposition of \(\xi^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\)

\(\xi^{(2)}_{2}\)

Mode \(\ell = 2\) function from harmonic decomposition of \(\xi^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\)

\(\xi^{(2)}_{0,c}\)

Defined as \(\xi^{(2)}_{0}\) evaluated exactly at the center of the NS

\(h^{(2)}\)

Metric function perturbation found in \(g_{tt}\) at \(\mathcal{O}(\epsilon^{2})\)

\(h^{(2)}_{0}\)

Mode \(\ell = 0\) function from spherical harmonic decomposition of \(h^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\)

\(h^{(2)}_{0,c}\)

Defined as \(h^{(2)}_{0}\) evaluated at exactly the center of the NS

\(h^{(2)}_{2}\)

Mode \(\ell = 2\) function from spherical harmonic decomposition of \(h_{2}\) at \(\mathcal{O}(\epsilon^{2})\)

\(h^{(2)}_{2,ext}\)

Function \(h^{(2)}_{2}\) defined only at the exterior of the NS

\(k^{(2)}\)

Areal radius metric function perturbation at \(\mathcal{O}(\epsilon^{2})\)

\(k^{(2)}_{2}\)

Mode \(\ell = 2\) function from harmonic decomposition of \(k^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\)

\(k^{(2)}_{2,ext}\)

Function \(k^{(2)}_{2}\) defined only at the exterior of the NS

\(A\)

Integration constant which appears in \(h^{(2)}_{2,ext}\) and \(k^{(2)}_{2,ext}\)

\(B\)

Initial condition constant in \(h^{(2)}_{2}\) and \(k^{(2)}_{2}\) system of differential equations

\(m^{(2)}\)

Metric function perturbation found in \(g_{rr}\) at \(\mathcal{O}(\epsilon^{2})\)

\(m^{(2)}_{0}\)

Mode \(\ell = 0\) function from harmonic decomposition of \(m_{2}\) at \(\mathcal{O}(\epsilon^{2})\)

\(m^{(2)}_{0,ext}\)

Function \(m^{(2)}_{0}\) defined only at the exterior of the NS

\(m^{(2)}_{2}\)

Mode \(\ell = 2\) function from spherical harmonic decomposition of \(m^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\)

\(m^{(2)}_{2,ext}\)

Function \(m^{(2)}_{2}\) defined only at the exterior of the NS

\(y\)

Tidal deformability function related to \(h^{(2)}_{2}\) as \(y \equiv R_{\star} h'^{(2)}_{2}/h^{(2)}_{2}\)

\(Y\)

Tidal deformability function \(y\) evaluated at \(R_{\star}\)

\(k_{2}\)

Tidal apsidal constant

\(\lambda^{\textsf{(tid)}}\)

Tidal Love number of the NS

\(\bar{\lambda}\)

Dimensionless tidal Love number

\(Q\)

Rotational quadrupole moment

\(\bar{Q}\)

Dimensionless rotational quadrupole moment

\(\delta R_{\star}\)

Monopole correction to the radius of the NS

\(\delta M_{\star}\)

Monopole correction to the mass-energy of the NS

B. Units

Geometrized units are often used in general relativity where \(G=c=1\). For neutron stars, it is convenient also to set \(M_{\odot}=1\). So, the overall units are \(G=c=M_{\odot}=1\). This is the system of units used in QLIMR. That is equivalent to make all quantities dimensionless with respect to one solar mass in units of length (\(\ell_{\odot} \sim 1.5 \, \textrm{km}\)). The following table shows the non-geometrized dimensions (NGD), geometrized dimensions (GD), neutron star dimensions (NSD) and the conversion factors between them for all the relevant quantities (Q) used in the source code.

Q

NGD

GD

NGD \(\rightarrow\) GD

GD \(\rightarrow\) NGD

NGD \(\rightarrow\) NSD

NSD \(\rightarrow\) NGD

\(\varepsilon_{c}\)

\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\)

\(\mathsf{L}^{-2}\)

\(G/c^{4}\)

\(c^{4}/G\)

\(G \ell^{2}_{\odot}/c^{4}\)

\(c^{4}/G \ell^{2}_{\odot}\)

\(R_{\star}\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(M_{\star}\)

\(\mathsf{M}\)

\(\mathsf{L}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell_{\odot}c^{2}\)

\(\ell_{\odot}c^{2}/G\)

\(I\)

\(\mathsf{L}^{2}\mathsf{M}\)

\(\mathsf{L}^{3}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell_{\odot}^{3}c^{2}\)

\(\ell_{\odot}^{3}c^{2}/G\)

\(\lambda^{\textsf{(tid)}}\)

\(\mathsf{L}^{2}\mathsf{T}^{2}\mathsf{M}\)

\(\mathsf{L}^{5}\)

\(G\)

\(1/G\)

\(G/\ell^{5}_{\odot}\)

\(\ell^{5}_{\odot}/G\)

\(Q\)

\(\mathsf{L}^{2}\mathsf{M}\)

\(\mathsf{L}^{3}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell^{3}_{\odot}c^{2}\)

\(\ell^{3}_{\odot}c^{2}/G\)

\(\delta R_{\star}\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(\delta M_{\star}\)

\(\mathsf{M}\)

\(\mathsf{L}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell_{\odot}c^{2}\)

\(\ell_{\odot}c^{2}/G\)

\(h\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(R\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(\varepsilon\)

\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\)

\(\mathsf{L}^{-2}\)

\(G/c^{4}\)

\(c^{4}/G\)

\(G \ell_{\odot}^{2}/c^{4}\)

\(c^{4}/G \ell_{\odot}^{2}\)

\(p\)

\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\)

\(\mathsf{L}^{-2}\)

\(G/c^{4}\)

\(c^{4}/G\)

\(G \ell_{\odot}^{2}/c^{4}\)

\(c^{4}/G \ell_{\odot}^{2}\)

\(\nu\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(Y\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\Omega\)

\(\mathsf{T}^{-1}\)

\(\mathsf{L}^{-1}\)

\(1/c\)

\(c\)

\(\ell_{\odot}/c\)

\(c/\ell_{\odot}\)

\(\varpi_{1}\)

\(\mathsf{T}^{-1}\)

\(\mathsf{L}^{-1}\)

\(1/c\)

\(c\)

\(\ell_{\odot}/c\)

\(c/\ell_{\odot}\)

\(\xi_{2}\)

\(\mathsf{L}\)

\(\mathsf{L}\)

1

1

1/\(\ell_{\odot}\)

\(\ell_{\odot}\)

\(h_{2}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(K_{2}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(\mathsf{-}\)

\(m_{2}\)

\(\mathsf{M}\)

\(\mathsf{L}\)

\(G/c^{2}\)

\(c^{2}/G\)

\(G/\ell_{\odot}c^{2}\)

\(\ell_{\odot}c^{2}/G\)