Appendices
A. List of symbols
Symbol |
Description |
---|---|
\(t\) |
Time coordinate in Boyer-Linquist type coordinates |
\(r\) |
Radial coordinate in Boyer-Linquist type coordinates |
\(\theta\) |
Polar angle in Boyer-Linquist type coordinates |
\(\phi\) |
Azimuthal angle in Boyer-Linquist type coordinates |
\(\mathsf{h}\) |
Enthalpy per rest mass-energy |
\(h\) |
Pseudo-enthalpy defined as \(h = \ln \mathsf{h}\). Independent integration variable |
\(h_{c}\) |
Pseudo-enthalpy defined exactly at the center of the NS |
\(h_{\epsilon}\) |
Pseudo-enthalpy at the small core of radius \(\epsilon\) from the center of the NS |
\(R\) |
Radial coordinate in Hartle-Thorne coordinates |
\(\Theta\) |
Polar angle in Hartle-Thorne coordinates (\(\Theta \equiv \theta\)) |
\(R_{\epsilon}\) |
Radial coordinate in Hartle-Thorne coordinates at small core of radius \(\epsilon\) |
\(\epsilon\) |
Book-keeping parameter of the Hartle-Thorne approximation |
\(g_{\mu \nu}\) |
Axially symmetric full spacetime metric tensor |
\(g^{(0)}_{\mu \nu}\) |
Spherically symmetric background metric tensor |
\(h_{\mu \nu}\) |
Metric perturbation tensor |
\(u^{\mu}\) |
Fluid 4-velocity vector of the NS |
\(T_{\mu \nu}\) |
Perfect fluid stress-energy tensor |
\(\nu\) |
Background metric function found in \(g_{tt}\) |
\(\nu^{\textsf{ext}}\) |
Function \(\nu\) valid only outside the NS |
\(\lambda\) |
Background metric function found in \(g_{rr}\) |
\(\lambda^{\textsf{ext}}\) |
Function \(\lambda\) defined only outside the NS |
\(M\) |
Enclosed mass-energy function related to \(\lambda\) as \(M \equiv (1-e^{-\lambda})R/2\) |
\(f\) |
Schwarzschild function given by \(f \equiv 1-2M/R\) |
\(p\) |
Pressure function at the interior of the NS |
\(p_{c}\) |
Pressure at exactly the center of the NS |
\(\varepsilon\) |
Total energy density function at the interior of the NS |
\(M_{\star}\) |
Total mass-energy of the NS |
\(R_{\star}\) |
Radius of the NS |
\(C\) |
Compactness of the NS defined as \(C \equiv M_{\star} / R_{\star}\) |
\(\Omega\) |
Constant angular speed of the NS |
\(\omega^{(1)}\) |
Metric function perturbation at \(\mathcal{O}(\epsilon)\) found in \(g_{t\phi}\) |
\(\varpi^{(1)}\) |
Relative angular velocity at order \(\mathcal{O}(\epsilon)\) defined as \(\varpi^{(1)} \equiv \Omega - \omega^{(1)}\) |
\(\varpi^{(1)}_{1}\) |
Mode \(\ell = 1\) function from the vector harmonic decomposition of \(\varpi^{(1)}\) |
\(\varpi^{(1)}_{1,c}\) |
Defined as \(\varpi^{(1)}_{1}\) evaluated exactly at the center of the NS |
\(\varpi^{(1)}_{1,ext}\) |
Function \(\varpi^{(1)}_{1}\) valid only at the exterior of the NS |
\(S\) |
Angular momentum of the NS |
\(I\) |
Moment of inertia of the NS |
\(\bar{I}\) |
Dimensionless moment of inertia defined as \(\bar{I} \equiv I / M^{3}_{\star}\) |
\(\xi^{(2)}\) |
Radial displacement function away from sphericity |
\(\xi^{(2)}_{0}\) |
Mode \(\ell = 0\) function from harmonic decomposition of \(\xi^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(\xi^{(2)}_{2}\) |
Mode \(\ell = 2\) function from harmonic decomposition of \(\xi^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(\xi^{(2)}_{0,c}\) |
Defined as \(\xi^{(2)}_{0}\) evaluated exactly at the center of the NS |
\(h^{(2)}\) |
Metric function perturbation found in \(g_{tt}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(h^{(2)}_{0}\) |
Mode \(\ell = 0\) function from spherical harmonic decomposition of \(h^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(h^{(2)}_{0,c}\) |
Defined as \(h^{(2)}_{0}\) evaluated at exactly the center of the NS |
\(h^{(2)}_{2}\) |
Mode \(\ell = 2\) function from spherical harmonic decomposition of \(h_{2}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(h^{(2)}_{2,ext}\) |
Function \(h^{(2)}_{2}\) defined only at the exterior of the NS |
\(k^{(2)}\) |
Areal radius metric function perturbation at \(\mathcal{O}(\epsilon^{2})\) |
\(k^{(2)}_{2}\) |
Mode \(\ell = 2\) function from harmonic decomposition of \(k^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(k^{(2)}_{2,ext}\) |
Function \(k^{(2)}_{2}\) defined only at the exterior of the NS |
\(A\) |
Integration constant which appears in \(h^{(2)}_{2,ext}\) and \(k^{(2)}_{2,ext}\) |
\(B\) |
Initial condition constant in \(h^{(2)}_{2}\) and \(k^{(2)}_{2}\) system of differential equations |
\(m^{(2)}\) |
Metric function perturbation found in \(g_{rr}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(m^{(2)}_{0}\) |
Mode \(\ell = 0\) function from harmonic decomposition of \(m_{2}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(m^{(2)}_{0,ext}\) |
Function \(m^{(2)}_{0}\) defined only at the exterior of the NS |
\(m^{(2)}_{2}\) |
Mode \(\ell = 2\) function from spherical harmonic decomposition of \(m^{(2)}\) at \(\mathcal{O}(\epsilon^{2})\) |
\(m^{(2)}_{2,ext}\) |
Function \(m^{(2)}_{2}\) defined only at the exterior of the NS |
\(y\) |
Tidal deformability function related to \(h^{(2)}_{2}\) as \(y \equiv R_{\star} h'^{(2)}_{2}/h^{(2)}_{2}\) |
\(Y\) |
Tidal deformability function \(y\) evaluated at \(R_{\star}\) |
\(k_{2}\) |
Tidal apsidal constant |
\(\lambda^{\textsf{(tid)}}\) |
Tidal Love number of the NS |
\(\bar{\lambda}\) |
Dimensionless tidal Love number |
\(Q\) |
Rotational quadrupole moment |
\(\bar{Q}\) |
Dimensionless rotational quadrupole moment |
\(\delta R_{\star}\) |
Monopole correction to the radius of the NS |
\(\delta M_{\star}\) |
Monopole correction to the mass-energy of the NS |
B. Units
Geometrized units are often used in general relativity where \(G=c=1\). For neutron stars, it is convenient also to set \(M_{\odot}=1\). So, the overall units are \(G=c=M_{\odot}=1\). This is the system of units used in QLIMR. That is equivalent to make all quantities dimensionless with respect to one solar mass in units of length (\(\ell_{\odot} \sim 1.5 \, \textrm{km}\)). The following table shows the non-geometrized dimensions (NGD), geometrized dimensions (GD), neutron star dimensions (NSD) and the conversion factors between them for all the relevant quantities (Q) used in the source code.
Q |
NGD |
GD |
NGD \(\rightarrow\) GD |
GD \(\rightarrow\) NGD |
NGD \(\rightarrow\) NSD |
NSD \(\rightarrow\) NGD |
---|---|---|---|---|---|---|
\(\varepsilon_{c}\) |
\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\) |
\(\mathsf{L}^{-2}\) |
\(G/c^{4}\) |
\(c^{4}/G\) |
\(G \ell^{2}_{\odot}/c^{4}\) |
\(c^{4}/G \ell^{2}_{\odot}\) |
\(R_{\star}\) |
\(\mathsf{L}\) |
\(\mathsf{L}\) |
1 |
1 |
1/\(\ell_{\odot}\) |
\(\ell_{\odot}\) |
\(M_{\star}\) |
\(\mathsf{M}\) |
\(\mathsf{L}\) |
\(G/c^{2}\) |
\(c^{2}/G\) |
\(G/\ell_{\odot}c^{2}\) |
\(\ell_{\odot}c^{2}/G\) |
\(I\) |
\(\mathsf{L}^{2}\mathsf{M}\) |
\(\mathsf{L}^{3}\) |
\(G/c^{2}\) |
\(c^{2}/G\) |
\(G/\ell_{\odot}^{3}c^{2}\) |
\(\ell_{\odot}^{3}c^{2}/G\) |
\(\lambda^{\textsf{(tid)}}\) |
\(\mathsf{L}^{2}\mathsf{T}^{2}\mathsf{M}\) |
\(\mathsf{L}^{5}\) |
\(G\) |
\(1/G\) |
\(G/\ell^{5}_{\odot}\) |
\(\ell^{5}_{\odot}/G\) |
\(Q\) |
\(\mathsf{L}^{2}\mathsf{M}\) |
\(\mathsf{L}^{3}\) |
\(G/c^{2}\) |
\(c^{2}/G\) |
\(G/\ell^{3}_{\odot}c^{2}\) |
\(\ell^{3}_{\odot}c^{2}/G\) |
\(\delta R_{\star}\) |
\(\mathsf{L}\) |
\(\mathsf{L}\) |
1 |
1 |
1/\(\ell_{\odot}\) |
\(\ell_{\odot}\) |
\(\delta M_{\star}\) |
\(\mathsf{M}\) |
\(\mathsf{L}\) |
\(G/c^{2}\) |
\(c^{2}/G\) |
\(G/\ell_{\odot}c^{2}\) |
\(\ell_{\odot}c^{2}/G\) |
\(h\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(R\) |
\(\mathsf{L}\) |
\(\mathsf{L}\) |
1 |
1 |
1/\(\ell_{\odot}\) |
\(\ell_{\odot}\) |
\(\varepsilon\) |
\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\) |
\(\mathsf{L}^{-2}\) |
\(G/c^{4}\) |
\(c^{4}/G\) |
\(G \ell_{\odot}^{2}/c^{4}\) |
\(c^{4}/G \ell_{\odot}^{2}\) |
\(p\) |
\(\mathsf{L}^{-1}\mathsf{T}^{-2}\mathsf{M}\) |
\(\mathsf{L}^{-2}\) |
\(G/c^{4}\) |
\(c^{4}/G\) |
\(G \ell_{\odot}^{2}/c^{4}\) |
\(c^{4}/G \ell_{\odot}^{2}\) |
\(\nu\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(Y\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\Omega\) |
\(\mathsf{T}^{-1}\) |
\(\mathsf{L}^{-1}\) |
\(1/c\) |
\(c\) |
\(\ell_{\odot}/c\) |
\(c/\ell_{\odot}\) |
\(\varpi_{1}\) |
\(\mathsf{T}^{-1}\) |
\(\mathsf{L}^{-1}\) |
\(1/c\) |
\(c\) |
\(\ell_{\odot}/c\) |
\(c/\ell_{\odot}\) |
\(\xi_{2}\) |
\(\mathsf{L}\) |
\(\mathsf{L}\) |
1 |
1 |
1/\(\ell_{\odot}\) |
\(\ell_{\odot}\) |
\(h_{2}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(K_{2}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(\mathsf{-}\) |
\(m_{2}\) |
\(\mathsf{M}\) |
\(\mathsf{L}\) |
\(G/c^{2}\) |
\(c^{2}/G\) |
\(G/\ell_{\odot}c^{2}\) |
\(\ell_{\odot}c^{2}/G\) |